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A - Betting (44/47)

For each option, the answer is simply 100
p where p is the

percentage bet on that option.
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E - Election Paradox (42/58)

To lose an election, you can afford to win as many as bN
2 c

regions—assume you win all votes in these regions.

For the remaining regions, you may win up to bp
2c votes

and still lose.

Greedy algorithm: win the regions with the bN
2 c highest

population.
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C - Social Distancing (39/92)

If there is a gap of length g between consecutive people,
we can fit b(g − 1)/2c more people in that gap.

Sum this value over all gaps.

Don’t forget about the gap between the last and first
person in the input.
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H - RSA Mistake (17/108)

Factor both numbers using trial division up to the square
root. Takes O(

√
n) time to factor n. Fast enough for this

problem as both numbers are ≤ 1012.

If either number is divisible by a prime more than once or if
the two numbers share a prime in common: no credit.

Otherwise, if either number is not a prime: partial
credit.

Otherwise, full credit.
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D - Pawn Shop (16/100)

Scan left-to-right through both arrays at once.

Maintain a frequency counter as you scan: freq[x ] is the
difference between the number of copies of item x
scanned so far from the first array minus the number of
copies of x scanned so far from the second array.

Also maintain a value ∆ indicating how many keys x are
such that freq[x ] 6= 0.

If ∆ ever becomes 0, place a divider.
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I - Slide Count (14/38)

Simulate the algorithm and remember a “timestamp” so
that each time s or e is incremented, the timestamp is
incremented.

In other words, the timestamp counts the number of
windows encountered so far.

During the simulation, record the timestamp at which wi
enters the window (i.e. when e = i)

When the window leaves wi (i.e. when s = i + 1), compute
the difference in timestamps.
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L - Ticket Completed? (11/54)

Create a graph G with the n cities as vertices and any
claimed rail segments as edges.

Find the connected components Ci within the graph (e.g.
using BFS or DFS).

For each connected component of k vertices, there are
(k

2

)
destination tickets that can be satisfied.

The probability that a random pair of cities will be
connected is the total number of satisfied destination
tickets (across all connected components) divided by the
total number of unique destination tickets:∑

Ci

(|Ci |
2

)(n
2

)
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N - Wordle with Friends (10/67)

For each candidate word in the dictionary:
Check whether each guess’ feedback is consistent given
the candidate word.
If the feedback is consistent for all guesses, output the
word.
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G - Loot Chest (6/10)

Recall: the expected number of times you need to flip a
coin until you see heads if the coin has probability p of
being heads is 1/p.

So the expected number of times you need to open a prize
pack is 1/(G/100).

Just need to compute the expected number of games until
you open a prize pack.

Dynamic Programming: If e[P] is the expected number of
games until you open a prize pack given that your current
probability of getting a pack is P is then:

e[100] = 1/(1− L/100) (keep playing until you win)
e[P] = 1 + L

100 ·e[P + ∆L] +
(
1− L

100

)
·
(
1− P

100

)
·e[P + ∆W ]

for 0 ≤ P ≤ 99. That is, you play a game. If you lose, P
goes up by ∆L and if you win but don’t get a prize pack,
then P goes up by ∆W . Make sure to cap the new P value
at 100 (eg. use min(100,P + ∆) whenever P goes up by ∆).
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J - Snowball Fight (3/8)

Single-step simulation is too slow.

Look for patterns. For example, if all three are distinct, say
A < B < C, then we can simulate ∆ := min B − A,C − B
steps in a single calculation: subtract ∆ from B and 2∆
from A. After this, two values are the same.

If two values are the same, they will follow the same
pattern until they are within, say, 4 of each other (or some
get close to 0). Example: A = B = 80,C = 100. Every 2
rounds, A and B will go down by 1 and C by 4 until C is
within 1 of A,B.

If they are within 4 of each other, just do single step
simulation until they are within 1 of each other.

If all 3 have the same health: Rubble!
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J - Snowball Fight (3/8)

If they are within 1 of each other, every 3 rounds each will
go down by 3.

If there are only 2 left, easy to tell.

If two of them have small health (say ≤ 4), then you should
just simulate to avoid corner cases in the big-step
simulation rules.

Carefully combining these ideas leads to a solution with
running time O(1). Just be extra careful to get the details
right!
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F - Protect the Pollen! (1/1)

The flowers (nodes) and vines (edges) can be represented
as a graph. In fact it is a tree.

We can solve this recursively on the tree.

For each node r , define f (r , s,b) as the largest total
pollination power possible for the subtree rooted at r and
the total size of the selected families is s.

b is a boolean flag indicating whether the root r must be
skipped (e.g. if parent node has been chosen).
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F - Protect the Pollen! (1/1)

At each node, combining the answers from subtrees is
essentially a knapsack problem.

This can be solved in O(NS2) time.
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K - Team Change (1/2)

Consider a graph G with vertices == players and edges ==
conflicts.

Label each vertex as must change, must not change,
and doesn’t matter.

After deleting some players, it is possible to form teams if
and only if each component of the resulting graph does not
have both a must change and a must not change player.

Cast as a min-cut problem where you cut vertices. Create
2 new nodes C,N representing change and not change.
Connect C to each vertex that must change, N to each
vertex that must not change, and find a min-size N − T
vertex cut.

Input was small enough that even Ford-Fulkerson is fast
enough.

RMRC 2021 Solution Sketches



M - Trade Routes (1/5)

The greedy algorithm is correct: process the routes i in
order of value (greatest to least). If adding i to the current
set of chosen routes is feasible, do it.

But that is too slow.

Idea: push the solution “upward”. For each vertex j ,
compute the optimal solution for nodes lying in the subtree
under j (i.e. as if j was Rome) and store in an ordered set
Rj

To compute Rj for j , take the bj most valuable items in
{j} ∪j ′ child of j Rj ′ (or all of them if there are less than bj ).

This is still too slow.
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M - Trade Routes (1/5)

The final trick is when merging two sets, say Rj and Rj ′ , to
always add the items from the smaller of the two to the
larger and regard the larger as the new merged set.

Each item is “moved” to a new set O(log n) times since the
size of the resulting set is at least twice as large as the
original set. Each movement takes O(log n) time if you use
an ordered set (or a binary heap). So O(n · log2 n) time in
total.

Can do in O(n · log n) times using heaps that support O(1)
insertion, but they aren’t in standard libraries. The above
idea is fast enough.
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B - Antialiasing (0/7)

For each query, there are four boundary segments for that
pixel.

Repeatedly clip given polygon against the four segments.

Exact arithmetic needs to be used.
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