2021 Rocky Mountain Regional Programming Contest

Solution Sketches

Credits

- Darko Aleksic
- Darcy Best
- Howard Cheng
- Ryan Farrell
- Zachary Friggstad
- Brandon Fuller
- Noah Weninger

A - Betting (44/47)

- For each option, the answer is simply $\frac{100}{p}$ where p is the percentage bet on that option.

E - Election Paradox (42/58)

- To lose an election, you can afford to win as many as $\left\lfloor\frac{N}{2}\right\rfloor$ regions-assume you win all votes in these regions.
- For the remaining regions, you may win up to $\left\lfloor\frac{p}{2}\right\rfloor$ votes and still lose.
- Greedy algorithm: win the regions with the $\left\lfloor\frac{N}{2}\right\rfloor$ highest population.

C - Social Distancing (39/92)

- If there is a gap of length g between consecutive people, we can fit $\lfloor(g-1) / 2\rfloor$ more people in that gap.
- Sum this value over all gaps.
- Don't forget about the gap between the last and first person in the input.

H - RSA Mistake (17/108)

- Factor both numbers using trial division up to the square root. Takes $O(\sqrt{n})$ time to factor n. Fast enough for this problem as both numbers are $\leq 10^{12}$.
- If either number is divisible by a prime more than once or if the two numbers share a prime in common: no credit.
- Otherwise, if either number is not a prime: partial credit.
- Otherwise, full credit.

D - Pawn Shop (16/100)

- Scan left-to-right through both arrays at once.
- Maintain a frequency counter as you scan: freq[x] is the difference between the number of copies of item x scanned so far from the first array minus the number of copies of x scanned so far from the second array.
- Also maintain a value Δ indicating how many keys x are such that $f r e q[x] \neq 0$.
- If Δ ever becomes 0 , place a divider.

I - Slide Count (14/38)

- Simulate the algorithm and remember a "timestamp" so that each time s or e is incremented, the timestamp is incremented.
- In other words, the timestamp counts the number of windows encountered so far.
- During the simulation, record the timestamp at which w_{i} enters the window (i.e. when $e=i$)
- When the window leaves w_{i} (i.e. when $s=i+1$), compute the difference in timestamps.

L - Ticket Completed? (11/54)

- Create a graph G with the n cities as vertices and any claimed rail segments as edges.
- Find the connected components C_{i} within the graph (e.g. using BFS or DFS).
- For each connected component of k vertices, there are $\binom{k}{2}$ destination tickets that can be satisfied.
- The probability that a random pair of cities will be connected is the total number of satisfied destination tickets (across all connected components) divided by the total number of unique destination tickets:

$$
\frac{\sum_{C_{i}}\binom{\left|C_{i}\right|}{2}}{\binom{n}{2}}
$$

N - Wordle with Friends (10/67)

- For each candidate word in the dictionary:
- Check whether each guess' feedback is consistent given the candidate word.
- If the feedback is consistent for all guesses, output the word.

G - Loot Chest (6/10)

- Recall: the expected number of times you need to flip a coin until you see heads if the coin has probability p of being heads is $1 / p$.
- So the expected number of times you need to open a prize pack is $1 /(G / 100)$.
- Just need to compute the expected number of games until you open a prize pack.
- Dynamic Programming: If $e[P]$ is the expected number of games until you open a prize pack given that your current probability of getting a pack is P is then:
- e[100] $=1 /(1-L / 100)$ (keep playing until you win)
- e[P] $=1+\frac{L}{100} \cdot e\left[P+\Delta_{L}\right]+\left(1-\frac{L}{100}\right) \cdot\left(1-\frac{P}{100}\right) \cdot e\left[P+\Delta_{W}\right]$ for $0 \leq P \leq 99$. That is, you play a game. If you lose, P goes up by Δ_{L} and if you win but don't get a prize pack, then P goes up by Δ_{w}. Make sure to cap the new P value at 100 (eg. use $\min (100, P+\Delta)$ whenever P goes up by Δ).

J - Snowball Fight (3/8)

- Single-step simulation is too slow.
- Look for patterns. For example, if all three are distinct, say $A<B<C$, then we can simulate $\Delta:=\min B-A, C-B$ steps in a single calculation: subtract Δ from B and 2Δ from A. After this, two values are the same.
- If two values are the same, they will follow the same pattern until they are within, say, 4 of each other (or some get close to 0). Example: $A=B=80, C=100$. Every 2 rounds, A and B will go down by 1 and C by 4 until C is within 1 of A, B.
- If they are within 4 of each other, just do single step simulation until they are within 1 of each other.
- If all 3 have the same health: Rubble!

J - Snowball Fight (3/8)

- If they are within 1 of each other, every 3 rounds each will go down by 3.
- If there are only 2 left, easy to tell.
- If two of them have small health (say ≤ 4), then you should just simulate to avoid corner cases in the big-step simulation rules.
- Carefully combining these ideas leads to a solution with running time $O(1)$. Just be extra careful to get the details right!

F - Protect the Pollen! (1/1)

- The flowers (nodes) and vines (edges) can be represented as a graph. In fact it is a tree.
- We can solve this recursively on the tree.
- For each node r, define $f(r, s, b)$ as the largest total pollination power possible for the subtree rooted at r and the total size of the selected families is s.
- b is a boolean flag indicating whether the root r must be skipped (e.g. if parent node has been chosen).

F - Protect the Pollen! (1/1)

- At each node, combining the answers from subtrees is essentially a knapsack problem.
- This can be solved in $O\left(N S^{2}\right)$ time.

K - Team Change (1/2)

- Consider a graph G with vertices == players and edges == conflicts.
- Label each vertex as must change, must not change, and doesn't matter.
- After deleting some players, it is possible to form teams if and only if each component of the resulting graph does not have both a must change and a must not change player.
- Cast as a min-cut problem where you cut vertices. Create 2 new nodes C, N representing change and not change. Connect C to each vertex that must change, N to each vertex that must not change, and find a min-size $N-T$ vertex cut.
- Input was small enough that even Ford-Fulkerson is fast enough.

M - Trade Routes (1/5)

- The greedy algorithm is correct: process the routes i in order of value (greatest to least). If adding i to the current set of chosen routes is feasible, do it.
- But that is too slow.
- Idea: push the solution "upward". For each vertex j, compute the optimal solution for nodes lying in the subtree under j (i.e. as if j was Rome) and store in an ordered set R_{j}
- To compute R_{j} for j, take the b_{j} most valuable items in $\{j\} \cup_{j^{\prime}}$ child of $j R_{j^{\prime}}$ (or all of them if there are less than b_{j}).
- This is still too slow.

M - Trade Routes (1/5)

- The final trick is when merging two sets, say R_{j} and $R_{j^{\prime}}$, to always add the items from the smaller of the two to the larger and regard the larger as the new merged set.
- Each item is "moved" to a new set $O(\log n)$ times since the size of the resulting set is at least twice as large as the original set. Each movement takes $O(\log n)$ time if you use an ordered set (or a binary heap). So $O\left(n \cdot \log ^{2} n\right.$) time in total.
- Can do in $O(n \cdot \log n)$ times using heaps that support $O(1)$ insertion, but they aren't in standard libraries. The above idea is fast enough.

B - Antialiasing (0/7)

- For each query, there are four boundary segments for that pixel.
- Repeatedly clip given polygon against the four segments.
- Exact arithmetic needs to be used.

